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† Dipartimento di Fisica Teorica dell’Università di Torino, Istituto Nazionale di Fisica Nucleare,
Sezione di Torino, via P Giuria 1, I-10125 Torino, Italy
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Abstract. We study the stability of the O(N) fixed point in three dimensions under
perturbations of the cubic type. We address this problem in the three casesN = 2, 3, 4 by
using finite-size scaling techniques and high-precision Monte Carlo simulations. It is well
known that there is a critical value 2< Nc < 4 below which the O(N) fixed point is stable
and above which the cubic fixed point becomes the stable one. Whilst we cannot exclude that
Nc < 3, as recently claimed, our analysis strongly suggests thatNc coincides with 3.

1. Introduction

Quantum field theories withφ4 type interactions are of importance in several physical
contexts. In particular, they represent one of the most powerful tools in the study of critical
phenomena [1]. Due to their simplicity they allow perturbative expansions up to rather
large orders from which one can extract estimates for various critical quantities (critical
indices and amplitude ratios) comparable in precision with those of the most advanced
Monte Carlo simulations. In the simplest case the theory contains a single fieldφ and
describes the Ising universality class (for a recent comparison between field theoretic and
Monte Carlo predictions see for example [2]).

When the fieldφ has more than one component the situation becomes more complex
and different quartic interaction terms can be defined. The simplest one has the form
(
∑N

i=1 φ
2
i )

2. It is O(N) symmetric and describes the O(N) universality class to which
belongs, for instance, the isotropicN -component Heisenberg ferromagnet. Besides this term,
the most interesting additional contribution is

∑N
i=1 φ

4
i which breaks the O(N) symmetry but

preserves the cubic invariance. The cubic subgroup of O(N) is composed of permutations
and reflections of theN components of the field. Note that in the following ‘cubic’ always
refers to the symmetry and not to a third power. The importance of the cubic term is due
to the fact that in a real crystal the crystalline structure gives rise to anisotropies which are
mainly of the cubic type. Thus real crystals are better described by mixed actions in which
both the O(N) and the cubic term are present.

Besides this phenomenological reason, this mixed model is also interesting in that it is a
simple non-trivial QFT with different fixed points in competition among them. In fact, it is
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Figure 1. Renormalization group flows for the cubic model in three dimensions.

easy to see that in this model there are four possible fixed points: the trivial Gaussian one,
the Ising one (which corresponds to the situation in which theN componentsφi decouple),
the O(N) symmetric and the cubic one (see figure 1). It was shown in [3] that while the
Gaussian and Ising fixed points are always unstable, the O(N) and cubic points interchange
their role asN increases. ForN < Nc the O(N) symmetric point is stable, while for
N > Nc it is destabilized by the cubic interaction and the cubic fixed point becomes the
stable one (see figure 1). It is possible to see within the framework of theε-expansion that
in three dimensionsNc < 4. The common lore, (supported byε-expansion up to the third
order) has always been thatNc should lie somewhere between 3 and 4 in three dimensions,
thus implying that theN = 3 case, which is the most interesting one for applications to
real crystals, should have a stable O(3) symmetric fixed point.

Recently, this commonly accepted scenario has been contrasted in a series of papers [4–
8] which suggested thatNc should liebelow 3. As a consequence the critical behaviour of
magnetic transitions in real crystals should be described by the cubic symmetric fixed point,
a result which, if confirmed, would be of relevant interest from a theoretical point of view.

The aim of this paper is to test this conjecture with a high-precision Monte Carlo
simulation. By studying finite-size corrections of a cubic invariant perturbation term exactly
at the critical O(N) point we can extract the eigenvalues of the stability matrix of the O(N)

fixed point. We study the three interesting casesN = 2, 3, 4. ForN = 2 andN = 4 the
expected results (stability of the isotropic and cubic fixed point respectively) are immediately
visible from the data. In theN = 3 case our results imply thatNc ≈ 3. Obviously the
numerical simulation cannot determine whetherNc = 3 is an exact result. However, we
obtain an upper bound for the absolute value of the stability index|b2| for the O(3) fixed
point, which turns out to be impressively small. In particular we are able to exclude all the
existing estimates [4, 5, 9–12] except that of Kleinertet al [6–8], which is still compatible
with our result within one standard deviation.
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2. The cubic model

We are interested in the three-dimensional quantum field theory defined by the Lagrangian

L = 1

2

N∑
i=1

(∂µφi∂
µφi +m2φ2

i )+
λ

4!

( N∑
i=1

φ2
i

)2

+ µ

4!

N∑
i=1

φ4
i . (1)

While the term(
∑N

i=1 φ
2
i )

2 is O(N) symmetric, the term
∑N

i=1 φ
4
i is only invariant under

the ‘cubic’ subgroup composed by permutations and reflections of theN componentsφi .
This model is discussed in detail in several quantum field theory textbooks, for example [1].

In the following we shall review the first-order results in theε-expansion. This rather
simple approximation already gives all the qualitative features of the renormalization flows
of the model.

The fixed points of the theory are given by the zeros of theβ-functions. The stability
matrices are given by the derivatives of theβ-functions at the zeros. From the eigenvalues
of these matrices it is then easy to identify the stable fixed point.

The twoβ-functions are given, at the first-order in theε-expansion, by

βu = −εu+ u2N + 8

6
+ uv (2)

βv = −εv + 3
2v

2+ 2uv (3)

whereu andv are the renormalized couplings related toλ andµ respectively.
By looking at the zeros of theβ-functions one can see that there are four possible fixed

points:
(1) The Gaussian fixed pointu = 0 v = 0.
(2) The Ising fixed pointu = 0 v = 2

3ε.
(3) The Heisenberg (O(N) invariant) fixed pointu = 6

N+8ε v = 0.

(4) The cubic fixed pointu = 2
N
ε v = 2(N−4)

3N ε.
The stability matrix is defined as

B =
( ∂βu(u,v)

∂u

∂βu(u,v)

∂v
∂βv(u,v)

∂u

∂βv(u,v)

∂v

)
. (4)

At the first order of theε-expansion one obtains

B =
(−ε + N+8

3 u+ v u

2v −ε + 2u+ 3v

)
. (5)

The corresponding eigenvalues, evaluated at the four fixed points are as follows.
(1) Gaussian:b1 = b2 = −ε.
(2) Ising: b1 = − ε

3 b2 = ε.
(3) Heisenberg:b1 = ε b2 = 4−N

N+8ε.
(4) cubic fixed point:b1 = Nε b2 = N−4

3 ε.
It is easy to see that the Gaussian and Ising fixed points are always unstable, independently
from the value ofN . In particular the Ising fixed point has only one direction of instability,
while the Gaussian one is unstable in both directions.

The cubic and O(N) fixed points interchange their role as a function ofN . For N
smaller than a critical valueNc (which at this order in theε-expansion turns out to be 4)
the Heisenberg fixed point is the stable one and defines the universality class towards which
the system flows in the infrared limit.

ForN > Nc, b2 evaluated at the Heisenberg point becomes negative whileb2 evaluated
at the cubic fixed point becomes positive and the cubic fixed point becomes the stable one.
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The renormalization flows corresponding to these two situations are reported in figure 1.
For N < Nc all initial points with u > 0 and v > N−4

3 u will flow towards the O(N)-
invariant, Heisenberg fixed point. ForN > Nc all initial points with u > 0 andv > 0 will
flow in the infrared limit towards the cubic fixed point which, forN < Nc lies in thev < 0
half-plane, exactly atN = Nc crosses thev = 0 axis and moves forN > Nc in the v > 0
region.

Initial points outside the above defined regions flow away towards more negative values
of u and/orv and finally reach the region in which the positivity condition for the quartic
potential is no longer satisfied. These trajectories are related (from the statistical mechanics
point of view) to realizations of the cubic model in which the phase transition is of the
fluctuation-induced first-order type. These models have recently attracted much interest as
a laboratory to study arbitrary weak first-order transitions [14].

The last remaining point is to find the value ofNc in three dimensions. It is easy
to see by looking to higher orders in theε-expansion, or with the help of Monte Carlo
simulations, that forN = 2 the Heisenberg fixed point is stable and that in contrast for
N = 4 the cubic fixed point is the stable one. Thus 2< Nc < 4. However, it is difficult
to decide whetherNc is greater or lower than 3. Equivalently one can look at the sign
of the b2 eigenvalue at the Heisenberg point forN = 3. If b2 is positive, thenNc must
be greater than 3. During the last 20 years many efforts have been made to settle this
question. The first result was reported in [9] where theε-expansion forNc was extended up
to the third-order leading to the estimateNc = 3.128. In agreement with this estimate (but,
using a completely different approach), Groveret al [10] obtainedb2 = 0.053 atN = 3.
A few years later, using different approximation techniques, the two contrasting results:
Nc ∼ 2.3 [11] andNc ∼ 3.4 [12] were obtained. Ten years later in [4, 5] a valueNc < 3
was suggested. In particular in [5], by means of a three loop calculation directly ind = 3,
the valuesNc = 2.91 andb2 = −0.008 were proposed. Finally, more recently, Kleinertet al
pushed theε-expansion up to the fifth order [7] and obtained a similar answer. First, in [7]
they found, (with a [2,2] Pade’ approximant)Nc = 2.958. Then in [8], by using a careful
resummation procedure of the fifth-order series, they obtained the valueb2 = −0.002 14
for the stability eigenvalue atN = 3. In [13], using the same series of [7], but a different
resummation procedure, the valueNc = 2.855 was found. Due to the nature of these results
it is very difficult to add sensible error bars to these estimates. However, it is clear from
the above discussion that the existing estimates forNc are scattered aroundNc = 3 and
that as the various techniques and approximations become increasingly more refined the
corresponding estimates forNc becoming closer toNc = 3.

3. The simulation

3.1. The model

The cubic model discussed in section 2 has a simple and straightforward lattice realization,
defined by the action:

S = −β
∑
〈xy〉

sxsy − µ
∑
x

N∑
i=1

(six)
4 (6)

where sx is a unit vector inRN . 〈x, y〉 denotes a pair of nearest-neighbour sites on the
lattice. We consider a three-dimensional cubic lattice of sizeL and lattice spacinga = 1.
For µ = 0 we have the standard O(N) invariant (Heisenberg) model, while forµ 6= 0 the
cubic-invariant perturbation

∑
x

∑N
i=1(s

i
x)

4 breaks the O(N) symmetry. In the following
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Table 1. Results forβc given in the literature forN = 2.

Ref. Method βc

[15] MCRG 0.454 20(2)
[15] MC 0.454 170(7)
[16] MC 0.454 165(4)
[17] HT 0.454 19(3)

Table 2. Results forβc given in the literature forN = 3.

Ref. Method βc

[18] MC 0.693 0(1)
[19] MC 0.693 1(1)
[20] MC 0.693 035(37)
[16] MC 0.693 002(12)
[17] HT 0.693 03(3)
[17] HT-θ 0.693 05(4)

Table 3. Results forβc given in the literature forN = 4.

Ref. Method βc

[21] MC 0.936 0(1)
[16] MC 0.935 861(8)
[17] HT 0.935 89(6)
[17] HT-θ 0.935 93(6)

we shall study this model in the three casesN = 2, 3, 4. We shall concentrate our main
efforts on theN = 3 case.

In three dimensions, forµ = 0, the O(N) model undergoes a second-order phase
transition for some valueβc (which depends onN ) of the coupling. In the vicinity of such a
point the continuum limit can be taken, leading to the O(N) symmetric QFT (corresponding
to the v = 0 axis in figure 1) discussed in the previous section. The presence of such a
continuous phase transition is obviously a mandatory condition for the whole analysis.

The simplest way to extract the value ofNc from a lattice simulation is to determine
the stability eigenvaluesb2 for N = 3. From the lattice point of view theb2 eigenvalue
appears as the critical index which controls the behaviour of any cubic-invariant (but O(N)-
violating) observable in the vicinity of the Heisenberg transition point.

The most efficient way to evaluate such a critical index is to look at the finite-size
dependence (as a function of the lattice sizeL) of a suitable observable (to be defined
below) evaluated exactly at the critical pointβc. Thus it is necessary to have a good
estimate of the critical coupling. Fortunately,βc is known with high precision in each of
the three casesN = 2, 3, 4 in which we are interested. This is one of the reasons why we
have chosen this particular lattice realization of the cubic model.

In tables 1–3 we have collected the most recent results forβc both from Monte Carlo
simulations and from series expansions. HT-θ indicates the biased resummation of the HT
series in which the value of the indexθ is given as input parameter. It is interesting to see
that all the estimates agree within the errors.
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Table 4. Values ofβc used in this paper.

N βc

2 0.454 165(4)
3 0.693 002(12)
4 0.935 861(8)

In table 4 we report the values (chosen from table 1–3) that we used in our simulations.

3.2. Observables

There are four natural observables in the model (6). The two terms which appear in the
action:

E ≡
∑
〈xy〉

sxsy (7)

and

P ≡
∑
x

∑
i

(six)
4. (8)

The total magnetization, which is the order parameter of the transition:

M ≡
∑
x

sx (9)

and the ratio

R =
∑

i (M
i)4

(M2)2
(10)

which quantifies the violation of the O(N) symmetry in the model†.
In order to study the stability of the fixed point we are actually interested in the derivative

of 〈R〉 with respect toµ at β = βc andµ = 0:

DR ≡ ∂〈R〉
∂µ
|µ=0,β=βc . (12)

In fact this derivative measures the (generalized) susceptibility of the system with respect
to a cubic perturbation, such as what happens for the ordinary magnetic susceptibility in the
case of a magnetic perturbation or for the specific heat in the case of a thermal perturbation.
At this point, a standard finite-size scaling analysis tells us that the critical index which
measures the infrared stability of the system with respect to the above perturbations,
also controls the finite-size behaviour (namely theL-dependence) of the corresponding
susceptibility exactly at the critical point. In particular, in the case in which we are interested,
DR should behave forβ = βc andµ = 0, as

DR ∝ L−b2 (13)

† Other choices are possible for the latter observable. For instance the term

X = M2
max

M2
(11)

whereM2
max is the maximal square of a component of the magnetization would work equally well. However, it

turns out that the ratioR defined above is the one which can be measured in the most efficient and simple way.



Stability of the O(N) invariant fixed point in 3D 4609

whereb2 is exactly the stability eigenvalue of the Heisenberg fixed point that we are looking
for.

Scaling laws of the type (13) are expected to hold for sufficiently large values ofL.
For small lattices, correction to scaling terms should be expected. It is thus important to
have results with small statistical errors for large lattice sizes. A few preliminary tests have
demonstrated that (at least for the caseN = 3) sizes up toL = 32 are needed to extract
reliable estimates ofb2. This requirement represents the major technical problem of this
work.

There are two possible choices to computeDR.
• It can be computed directly in the simulation atµ = 0 as

DR = 〈PR〉 − 〈P 〉〈R〉. (14)

• It can be computed by using the finite-difference method, i.e. by simulating the model
at small non-zero values ofµ:

DR(µ) ≡ R(µ)− R(−µ)
2µ

. (15)

It is easy to recover the relationship betweenDR andDR(µ). First, let us notice that
on a finite latticeR(µ, β) must be an analytic function of its parameters. This holds also at
β = βc. Therefore we can Taylor-expandR(µ, β) in powers ofµ for fixed β = βc. Taking
the symmetric difference we obtain

DR = DR(µ)+ 1

3!

d3R

dµ3
µ2+O(µ4). (16)

Both definitions have their drawbacks. Theµ = 0 simulations are affected by a strong
enhancement of the variance (hence of the statistical errors) asL increases. It ensues that
the statistical error ofDR at a fixed number of measurements increases roughly asL3/2. As
a consequence excessively large samples are needed to keep the error sufficiently small for
L > 16.

In contrast, forDR(µ) at fixedµ the statistical error does not increase withL. However,
the O(µ2) corrections do increase withL. Reducing these O(µ2) corrections requires a
reduction in the value ofµ. This in turn requires an increase in the number of measurements
to keep the statistical error fixed.

In the following section we shall discuss a way of avoiding these problems. By using
the global O(N) symmetry of the model atµ = 0 an improved version ofDR can be
constructed. This improvement does not change theL dependence of the variance, but
gives a significant reduction of its magnitude, thus allowing us to reach, with a reasonable
CPU time, lattice sizes as large asL = 32 which are large enough to extract the finite-size
behaviour with the required precision. Most of the data that we shall discuss in the final
section were obtained by using this improved observable. We also performed, as a cross
check, some simulations at finiteµ. The agreement that we find between the values ofDR

obtained in these two ways is a non-trivial check of the reliability of our results.

3.3. Variance-reduced estimator forDR.

Variance-reduced estimators have the same expectation value as the corresponding standard
estimators. However, their variance is reduced, which allows for more accurate results
in Monte Carlo simulations than the standard estimator. A general principle to construct
variance reduced estimators is to look for degrees of freedom which can be integrated out
analytically.
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In order to obtain a variance reduced estimator of∂〈R〉
∂µ

we integrateP ,R andPR over
the global O(N) rotations.

This is trivial forP andR, but it is less simple in the case of thePR component. Since
P is a sum over all lattice sites we can commute the integration over the global rotations
and the summation over the lattice sites. The integral to be solved is hence given by

I =
∫

O(N)
DT

(∑
i

[(T sx)
i ]4

)(∑
i

[(T m)i ]4

)
(17)

whereT is an element of O(N), DT the Haar-measure,sx the spin at the sitex, andm a
unit vector in the direction of the global magnetization. For symmetry reasons the integral
only depends on the angle betweensx andm, which we define as follows

msx = cos(α). (18)

Integral (17) can be evaluated explicitly for any value ofN . Details of the calculation
are reported in the appendix. Here we only list the results in the three cases in which we
are interested:

N = 2

I = 9
16 + 1

32 cos(4α) (19)

N = 3

I = 1
60 cos(4α)+ 1

105 cos(2α)+ 153
420 (20)

N = 4

I = 2
25 cos4(α)− 3

50 cos2(α)+ 51
200. (21)

3.4. The Monte Carlo algorithm

Due to the different symmetries in the models, we had to use different algorithms in the
two casesµ = 0 andµ 6= 0.

3.4.1. µ = 0 In the caseµ = 0 we used the single-cluster algorithm of Wolff [22] and
the microcanonical overrelaxation algorithm. The basic idea of the cluster algorithm is to
construct conditional Ising models. This is achieved by allowing only the sign-change of
the spin component parallel to a unit vectorr in RN . The delete probability depends on the
pair of lattice sites and is given by

pd(x, y) = min[1, exp(−2(rsx)(rsy))] (22)

wherex and y are nearest-neighbour sites on the lattice. The vectorr is chosen with a
probability density uniform onSN−1. For each update a newr is chosen.

The variance of the improved estimator ofDR is mainly caused by local fluctuations of
the spins. Hence it is useful to supplement the cluster-algorithm with a fast local algorithm
to produce local changes of the configuration. For that purpose we used the microcanonical
overrelaxation algorithm.

The elementary update of the algorithm is given by

s ′x =
2(nxsx)nx

n2
x

− sx (23)

wherenx is the sum of the nearest-neighbour spins ofsx . Since neither a random number nor
the evaluation of the exponential function is needed for this update the CPU-time required
is rather small compared with a Metropolis or a heat-bath update.
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The whole update cycle used in our simulations consists of a mixture of nine
overrelaxation sweeps andK cluster updates.K is chosen such that the number of spins
updated inK cluster updates is of the order of the number of lattice sites. A measurement
is performed after each overrelaxation sweep and after the cluster-updates. There are hence
10 measurements in the nine overrelaxation sweeps andK cluster-updates cycle.

3.4.2.µ 6= 0. For µ 6= 0 some modifications are needed. We have restricted the vectorr

such that
∑

i (s
i)4 is not altered by the update. This is guaranteed if the sign of a component

is changed or two components are exchanged or a combination of both. This means thatr

is either parallel to an axis or is diagonal in a plane.
r is in

(1, 0, . . . ,0), (0, 1, . . . ,0) · · · (0, 0, . . . ,1) (24)

or
1√
2
(1, 1, . . . ,0),

1√
2
(1, 0, . . . ,1), . . .

1√
2
(0, . . .1, 1) (25)

or
1√
2
(1,−1, . . . ,0),

1√
2
(1, 0, . . . ,−1), . . .

1√
2
(0, . . .1,−1). (26)

While this restriction ofr to a discrete subset ofSN−1 does not violate detailed balance
it means that the cluster update by itself is not ergodic.

In order to restore ergodicity we supplement the cluster update with an (ergodic)
Metropolis update. For performance reasons we also added a local reflection update that is
microcanonical forµ = 0. A spin is reflected at the sum of its neighbours

s ′x =
(Sxsx)Sx

S2
x

− 2sx (27)

whereSx is the sum of the spins on nearest-neighbour sites ofx. For µ 6= 0 the proposal
s ′x is accepted with a probability

Pacc= min

[
1, exp

(
µ
∑
i

[(s ′ix )
4− (six)4]

)]
. (28)

A whole update cycle consists of one Metropolis update, one local reflection update
plusK cluster updates.K is chosen, as in theµ = 0, case such that the number of spins
updated inK cluster updates is of the order of the number of lattice sites. A measure is
performed in each update cycle.

3.5. Statistical and systematic errors

We evaluated statistical errors with the standard binning method. Both in theµ = 0
andµ 6= 0 cases bins of 1000 update cycles are chosen (corresponding to 10 000 and 1000
measurements respectively). This binning was already performed during the simulation since
not all individual measurements could be stored on disc. Besides the statistical uncertainty
we also have to face the systematic error due to the uncertainty1βc in the estimate ofβc.
To evaluate this error we also measured in the simulation the expectation value〈ER〉. The
difference

〈ER〉 − 〈E〉〈R〉 (29)
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gives an estimate of the derivative of〈R〉 with respect toβ, from which we can obtain the
systematic error induced onR by the uncertainty inβc:

(〈ER〉 − 〈E〉〈R〉)×1βc. (30)

With a similar construction we obtain the error induced onDR. We can consider this
as a lower bound on the accuracy that we can reach for the derivatives. It makes no sense
to reduce the statistical error ofDR below this bound. This observation fixes the typical
sample size for the simulations, which was of the order of 20 000 bins.

4. Results and discussion

4.1. Results atµ = 0

We simulated the models withN = 2, 3, 4 atµ = 0, β = βc, in the rangesL ∈ [4−16] for
N = 2; L ∈ [4 − 32] for N = 3 andL ∈ [4 − 20] for N = 4. The results are reported in
tables 5–7. In the first column we report the lattice size and in the second the values of the
derivativeDR. the first error in parenthesis denotes the statistical uncertainty, while in the
second parenthesis the error induced by the uncertainty inβc is reported. In the last column
we report the sample size (number of bins multiplied by the number of measurements in
each bin).

4.2. Results atµ 6= 0

As a test of the above results we also performed simulations atµ 6= 0, both forN = 2
andN = 3. We evaluated the finiteµ estimatorsDR(µ) by using equation (15). The

Table 5. Results forDR in theN = 2 model.

L DR Statistics

4 0.011 046(20)(1) 10 000× 104

6 0.010 506(34)(2) 10 000× 104

8 0.010 121(51)(2) 10 000× 104

10 0.009 728(58)(4) 15 000× 104

12 0.009 523(76)(5) 15 000× 104

16 0.008 904(117)(4) 15 000× 104

Table 6. Results forDR in theN = 3 model.

L DR Statistics

4 0.019 672(19)(3) 10 000× 104

6 0.020 118(19)(5) 15 000× 104

8 0.020 187(20)(7) 20 004× 104

10 0.020 196(25)(10) 20 870× 104

12 0.020 152(32)(13) 21 500× 104

14 0.020 178(40)(15) 20 770× 104

16 0.020 233(49)(16) 20 750× 104

20 0.020 094(68)(22) 20 150× 104

24 0.020 178(84)(28) 23 145× 104

32 0.020 265(140)(39) 19 560× 104
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Table 7. Results forDR in theN = 4 model.

L DR Statistics

4 0.023 474(15)(1) 10 000× 104

6 0.025 287(16)(3) 10 000× 104

8 0.026 294(19)(4) 10 000× 104

10 0.027 097(23)(6) 10 000× 104

12 0.027 742(27)(8) 10 600× 104

16 0.028 774(39)(13) 10 000× 104

20 0.029 605(52)(38) 10 050× 104

Table 8. Results forDR for µ 6= 0.

N = 2, L = 8 N = 2, L = 12 N = 2, L = 16 N = 3, L = 12

µ = 4 0.010 503(140)(3)
µ = 2 0.010 117(28)(1) 0.010 008(122)(3)
µ = 1 0.010 112(57)(1) 0.009 495(118)(3) 0.020 977(64)(9)
µ = 0.5 0.010 054(74)(1) 0.009 505(103)(3) 0.009 139(103)(4) 0.020 306(130)(9)
µ = 0.25 0.020 076(257)(9)

µ = 0 0.010 121(51)(2) 0.009 523(76)(5) 0.008 904(117)(4) 0.020 152(32)(13)

results are reported in table 8 where, in the last line, we also reported for comparison the
correspondingµ = 0 estimates.

The agreement between the results obtained from the two approaches is very good and
makes us confident about the reliability of theµ = 0 set of data.

4.3. Theb2 index

We fitted the data obtained atµ = 0 with the scaling law

DR = CL−b2. (31)

The fit results are collected in table 9 where in the second column we give the minimum
valueLmin of L taken into account in the fit. In the third and fourth columns we report the
reducedχ2 and the confidence level respectively. Finally, the last two columns report the
best fit values ofC andb2. As usual we give in the first parenthesis the statistical error and
in the second the error induced byβc. The various fits are plotted and compared in figure 2
and 3.

The large value ofχ2 clearly indicates that for any value ofN the sample atL = 4 is
strongly affected by correction to scaling terms and must be discarded. Fits withoutL = 4
have an acceptableχ2. However, this fact does not necessarily imply that it is justified to
ignore corrections to scaling. Hence we regard the fits withLmin = 8 as our final result.
Still it remains difficult to quantify the systematic error due to corrections to scaling. Based
on the experience with the finite-size scaling analysis of other exponents of the Heisenberg
model we expect them to be of the same order of magnitude as the statistical error of the
Lmin = 8 fits.
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Figure 2. Log(DR) as a function of Log(L). Triangles, squares and circles denote theN = 4,
N = 3 andN = 2 data respectively. Errors are not reported since they are smaller than the
symbol sizes. To render easier the comparison among the three sets of data, all the values of
DR have been normalized to the best fit value of the constantC (see table 9 for the value of
C). The three lines correspond to the best fits obtained neglecting theL = 6 derivative.

Table 9. Results forC andb2.

N Lmin χ2
red CL (%) C b2

2 4 2.01 9 0.013 35(9)(1) 0.1362(40)(3)
2 6 1.17 32 0.013 81(24)(1) 0.1519(84)(4)
2 8 0.85 43 0.014 45(54)(2) 0.1711(166)(6)

3 4 26.5 0 0.019 36(4)(2) −0.0174(10)(6)
3 6 1.32 23 0.020 05(6)(2) −0.0026(14)(7)
3 8 0.71 64 0.020 22(10)(3) 0.0007(20)(9)

4 4 77.5 0 0.019 28(3)(1) −0.1473(7)(4)
4 6 1.22 30 0.019 97(5)(2) −0.1321(10)(5)
4 8 0.51 67 0.020 08(8)(3) −0.1299(16)(8)

4.4. Discussion and comparison with other estimates

As can be seen from table 9, our results forN = 3 are certainly incompatible with all the
existing estimates [4, 5, 9–12], except that of Kleinertet al [6–8]. In fact, if we keep in
the fit for N = 3 also theL = 6 sample we find an impressive agreement with the result
b2 = −0.002 14 of [7]. However, as mentioned above, we strongly suspect that theL = 6
sample is still affected by correction to scaling terms and prefer to quote as our best estimate
theL = [8–32] resultb2 = 0.0007(20)(9), which is still compatible with the result of [7],
but suggests thatNc could indeed exactly coincide with 3. In this respect it must also be
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Figure 3. The N = 3 data only, plotted with a much higher resolution. The dotted line
corresponds to the best fitincludingL = 6, while the broken line corresponds to theL = [8−32]
fit. All the points are normalized as in figure 2.

noticed that the trend of the perturbative estimates ofb2 quoted in [7] as a function of the
order in the perturbative expansion also suggests thatNc converges to 3 in agreement with
our result.

In any case, let us stress again that it is obviously impossible to determine by means of
a numerical simulation whetherNc = 3 is an exact result and that the fact that the difference
|Nc − 3| is so small, and compatible with zero, might well be a coincidence. However, we
think that it would be worthwhile to look for an argument which explains why the cubic
and Heisenberg fixed point in three dimensions should coincide exactly forN = 3.
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Appendix

In this appendix we evaluate the integral

I =
∫

O(N)
DT

(∑
i

[(T sx)
i ]4

)(∑
i

[(T m)i ]4

)
(A1)

whereT is an element of O(N), DT the Haar-measure,sx the spin at the sitex andm a
unit vector in the direction of the global magnetization. For symmetry reasons the integral
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only depends on the angle betweensx andm which is defined as

msx = cos(α). (A2)

We write the integral as

I (α) =
∫
SN−1

ds

(∑
i

s4
i

)∫
SN−2,s

dt

(∑
i

t4i

)
(A3)

where
∫
SN−1 denotes the integral over theN -dimensional sphere.

∫
SN−2,s

denotes the integral
over theN − 1 dimensional subspace defined as the set of all the vectorst that for any
fixed s satisfy the equationst = cos(α). We choose the normalizations so that

∫
SN−1 ds = 1

and
∫
SN−2,s

dt = 1.
Because of symmetry we can restrict the calculation to the first component ofs

I (α) = N
∫
SN−1

ds s4
1

∫
SN−2,s

dt

(∑
i

t4i

)
. (A4)

Now we decompose the integral
∫
SN−1 into the integral over thes1 component and for

fixed s1 over the remainingSN−2.
We obtain

I (α) = N constant
∫ s1=1

s1=0
ds1 (1− s2

1)
(N−3)/2s4

1

∫
SN−2

ds ′
∫
SN−2,s

dt

(∑
i

t4i

)
(A5)

where

constant1 =
[ ∫ s1=1

s1=0
ds1 (1− s2

1)
(N−3)/2

]−1

(A6)

ands ′ is s without the 1-component.
Let us now study∫

SN−2
ds ′
∫
SN−2,s

dt. (A7)

This measure fort is invariant under rotations around the 1-axis. The non-trivial question
is the measure for the 1-component oft . The range oft1 is given by

tmax= cos(α)s1+ sin(α)
√

1− s2
1 (A8)

and

tmin = cos(α)s1− sin(α)
√

1− s2
1. (A9)

The measure between these extreme values is given by the fact that for anys, t is distributed
on aSN−2 sphere. Hence the measure is (forN > 2)

constant2

[
1−

(
t1− c

2s

)2
](N−4)/2

(A10)

with c = cos(α)s1 ands = sin(α)
√

1− s2
1. The normalization constant2 is given by

const2 =
{∫ c+s

t1=c−s

[
1−

(
t1− c

2s

)2](N−4)/2}−1

. (A11)

For fixed t1 the integration of the remaining components gives us

(1− t21)2〈R〉N−1,with 〈R〉N = 3/(N + 2).
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Now we are in the position to write down the full integral:

I (α) = N constant1

∫ s1=1

s1=0
ds1(1− s2

1)
(N−3)/2s4

1 (A12)

constant2

∫ c+s

t1=c−s

[
1−

(
t1− c

2s

)2
](N−4)/2(

t41 +
3

N + 1
(1− t21)2

)
. (A13)

This integral can be solved with standard techniques and yields in the three cases
N = 2, 3, 4. The results are listed in section 3.
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