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Abstract. We study the stability of the @v) fixed point in three dimensions under
perturbations of the cubic type. We address this problem in the three dase<?, 3,4 by

using finite-size scaling techniques and high-precision Monte Carlo simulations. It is well
known that there is a critical value 2 N. < 4 below which the QN) fixed point is stable

and above which the cubic fixed point becomes the stable one. Whilst we cannot exclude that
N, < 3, as recently claimed, our analysis strongly suggestsNhatoincides with 3.

1. Introduction

Quantum field theories witlp* type interactions are of importance in several physical
contexts. In particular, they represent one of the most powerful tools in the study of critical
phenomena [1]. Due to their simplicity they allow perturbative expansions up to rather
large orders from which one can extract estimates for various critical quantities (critical
indices and amplitude ratios) comparable in precision with those of the most advanced
Monte Carlo simulations. In the simplest case the theory contains a singlegfialt
describes the Ising universality class (for a recent comparison between field theoretic and
Monte Carlo predictions see for example [2]).

When the fieldp has more than one component the situation becomes more complex
and different quartic interaction terms can be defined. The simplest one has the form
(vazl ¢>i2)2. It is O(N) symmetric and describes the(®) universality class to which
belongs, for instance, the isotropiccomponent Heisenberg ferromagnet. Besides this term,
the most interesting additional contributionEfV:1 ¢! which breaks the QV) symmetry but
preserves the cubic invariance. The cubic subgroup @f ds composed of permutations
and reflections of th&v components of the field. Note that in the following ‘cubic’ always
refers to the symmetry and not to a third power. The importance of the cubic term is due
to the fact that in a real crystal the crystalline structure gives rise to anisotropies which are
mainly of the cubic type. Thus real crystals are better described by mixed actions in which
both the QN) and the cubic term are present.

Besides this phenomenological reason, this mixed model is also interesting in that it is a
simple non-trivial QFT with different fixed points in competition among them. In fact, it is
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Gaussian Heisenberg Heisenberg

Figure 1. Renormalization group flows for the cubic model in three dimensions.

easy to see that in this model there are four possible fixed points: the trivial Gaussian one,
the Ising one (which corresponds to the situation in whichtheomponentg; decouple),
the QIN) symmetric and the cubic one (see figure 1). It was shown in [3] that while the
Gaussian and Ising fixed points are always unstable, {#) @nd cubic points interchange
their role asN increases. FOIN < N, the QIN) symmetric point is stable, while for
N > N, it is destabilized by the cubic interaction and the cubic fixed point becomes the
stable one (see figure 1). It is possible to see within the framework of-thgansion that
in three dimension®V, < 4. The common lore, (supported lkyexpansion up to the third
order) has always been that should lie somewhere between 3 and 4 in three dimensions,
thus implying that theV = 3 case, which is the most interesting one for applications to
real crystals, should have a stable O(3) symmetric fixed point.

Recently, this commonly accepted scenario has been contrasted in a series of papers [4—
8] which suggested tha¥. should liebelow 3. As a consequence the critical behaviour of
magnetic transitions in real crystals should be described by the cubic symmetric fixed point,
a result which, if confirmed, would be of relevant interest from a theoretical point of view.

The aim of this paper is to test this conjecture with a high-precision Monte Carlo
simulation. By studying finite-size corrections of a cubic invariant perturbation term exactly
at the critical QN) point we can extract the eigenvalues of the stability matrix of th& O
fixed point. We study the three interesting cadés= 2,3,4. ForN = 2 andN = 4 the
expected results (stability of the isotropic and cubic fixed point respectively) are immediately
visible from the data. In th&v = 3 case our results imply that. ~ 3. Obviously the
numerical simulation cannot determine whetlér = 3 is an exact result. However, we
obtain an upper bound for the absolute value of the stability irjéigxfor the O(3) fixed
point, which turns out to be impressively small. In particular we are able to exclude all the
existing estimates [4, 5, 9-12] except that of Kleinetral [6—8], which is still compatible
with our result within one standard deviation.
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2. The cubic model

We are interested in the three-dimensional quantum field theory defined by the Lagrangian

13 2,2 NS 22 R 4
LIZE;(E)M(]ﬁ;a“(]ﬁ,-—}-m ‘75,)4‘47(;‘15,) +m;¢z 1)

While the term(3"" ;, $?)2 is O(N) symmetric, the terny " , ¢* is only invariant under
the ‘cubic’ subgroup composed by permutations and reflections ofVtltemponentsp;.

This model is discussed in detail in several quantum field theory textbooks, for example [1].
In the following we shall review the first-order results in thexpansion. This rather
simple approximation already gives all the qualitative features of the renormalization flows

of the model.

The fixed points of the theory are given by the zeros of gheinctions. The stability
matrices are given by the derivatives of tBdunctions at the zeros. From the eigenvalues
of these matrices it is then easy to identify the stable fixed point.

The two g-functions are given, at the first-order in theexpansion, by

N +8
,3u=—61/t+u2 + + uv (2)

By = —€v + %vz + 2uv 3

whereu andv are the renormalized couplings relatedit@nd o respectively.

By looking at the zeros of thg-functions one can see that there are four possible fixed
points:

(1) The Gaussian fixed poimt= 0 v=0.

(2) The Ising fixed poini = 0 v = 2e.

(3) The Helsen_berg (QJ) mvzzrlant) fixed pz)antz = ya8€ v=0.
(4) Th(_—:- cubic _flx_ed po_mh = N€ v = S5
The stability matrix is defined as
9, (u,v) 3By (u,v)
B = <8/31%,v) i) ) : (4)
ou v
At the first order of thes-expansion one obtains
[ €+ NTJFBM +v u
B_( 2v —€4+2u+3v )’ ©)

The corresponding eigenvalues, evaluated at the four fixed points are as follows.

(1) Gaussianb; = by = —e.

(2) Ising: by = —3 by = €.

(3) Heisenbergh; = ¢ by = e

(4) cubic fixed point:b; = Ne by = e,
It is easy to see that the Gaussian and Ising fixed points are always unstable, independently
from the value ofV. In particular the Ising fixed point has only one direction of instability,
while the Gaussian one is unstable in both directions.

The cubic and @QV) fixed points interchange their role as a function f For N
smaller than a critical valug/. (which at this order in the-expansion turns out to be 4)
the Heisenberg fixed point is the stable one and defines the universality class towards which
the system flows in the infrared limit.

For N > N, b, evaluated at the Heisenberg point becomes negative Whitwaluated
at the cubic fixed point becomes positive and the cubic fixed point becomes the stable one.
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The renormalization flows corresponding to these two situations are reported in figure 1.
For N < N, all initial points withu > 0 andv > %‘u will flow towards the QN)-
invariant, Heisenberg fixed point. Faf > N, all initial points withu > 0 andv > 0 will
flow in the infrared limit towards the cubic fixed point which, fr < N, lies in thev < 0
half-plane, exactly alv = N, crosses the = 0 axis and moves foN > N, in thev > 0
region.

Initial points outside the above defined regions flow away towards more negative values
of u and/orv and finally reach the region in which the positivity condition for the quartic
potential is no longer satisfied. These trajectories are related (from the statistical mechanics
point of view) to realizations of the cubic model in which the phase transition is of the
fluctuation-induced first-order type. These models have recently attracted much interest as
a laboratory to study arbitrary weak first-order transitions [14].

The last remaining point is to find the value & in three dimensions. It is easy
to see by looking to higher orders in tkeexpansion, or with the help of Monte Carlo
simulations, that forN = 2 the Heisenberg fixed point is stable and that in contrast for
N = 4 the cubic fixed point is the stable one. Thus2V, < 4. However, it is difficult
to decide whethew, is greater or lower than 3. Equivalently one can look at the sign
of the b, eigenvalue at the Heisenberg point f§r= 3. If b, is positive, thenN, must
be greater than 3. During the last 20 years many efforts have been made to settle this
question. The first result was reported in [9] where dkexpansion forN. was extended up
to the third-order leading to the estimate = 3.128. In agreement with this estimate (but,
using a completely different approach), Growtral [10] obtainedb, = 0.053 atN = 3.

A few years later, using different approximation techniques, the two contrasting results:
N. ~ 2.3 [11] andN, ~ 3.4 [12] were obtained. Ten years later in [4, 5] a vahig< 3

was suggested. In particular in [5], by means of a three loop calculation direcily=ir3,

the valuesV, = 2.91 andb, = —0.008 were proposed. Finally, more recently, Kleiredral
pushed the-expansion up to the fifth order [7] and obtained a similar answer. First, in [7]
they found, (with a [2,2] Pade’ approximamt). = 2.958. Then in [8], by using a careful
resummation procedure of the fifth-order series, they obtained the balee —0.002 14

for the stability eigenvalue a¥ = 3. In [13], using the same series of [7], but a different
resummation procedure, the valiyg = 2.855 was found. Due to the nature of these results

it is very difficult to add sensible error bars to these estimates. However, it is clear from
the above discussion that the existing estimatesMoiare scattered aroun. = 3 and

that as the various techniques and approximations become increasingly more refined the
corresponding estimates fof. becoming closer tav, = 3.

3. The simulation

3.1. The model

The cubic model discussed in section 2 has a simple and straightforward lattice realization,
defined by the action:

N
S==BY sesy—pmy Y (s (6)
(xy) x =1

wheres, is a unit vector inRY. (x,y) denotes a pair of nearest-neighbour sites on the
lattice. We consider a three-dimensional cubic lattice of dizend lattice spacing = 1.
For u = 0 we have the standard(®) invariant (Heisenberg) model, while far £ 0 the
cubic-invariant perturbatio_ " ,(s\)* breaks the @V) symmetry. In the following
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Table 1. Results for8. given in the literature fotv = 2.

Ref. Method B,

[15] MCRG  0.45420(2)

[15] MC 0.454170(7)
[16] MC 0.454 165(4)
[17] HT 0.45419(3)

Table 2. Results forg. given in the literature fotv = 3.

Ref.  Method 8.

[18] MC 0.6930(1)
[19] MC 0.6931(1)
[200 MC 0.693035(37)
[16] MC 0.693002(12)
[17] HT 0.69303(3)

[17] HT-6  0.69305(4)

Table 3. Results for8. given in the literature fotv = 4.

Ref. Method 8.

[21] MC 0.9360(1)
[16] MC 0.935861(8)
7] HT 0.93589(6)

[17] HT-6  0.93593(6)

we shall study this model in the three casés= 2, 3,4. We shall concentrate our main
efforts on theN = 3 case.

In three dimensions, fopr = 0, the QN) model undergoes a second-order phase
transition for some valug, (which depends o) of the coupling. In the vicinity of such a
point the continuum limit can be taken, leading to the\) symmetric QFT (corresponding
to thev = 0 axis in figure 1) discussed in the previous section. The presence of such a
continuous phase transition is obviously a mandatory condition for the whole analysis.

The simplest way to extract the value df from a lattice simulation is to determine
the stability eigenvalues, for N = 3. From the lattice point of view thé, eigenvalue
appears as the critical index which controls the behaviour of any cubic-invariant (bt O
violating) observable in the vicinity of the Heisenberg transition point.

The most efficient way to evaluate such a critical index is to look at the finite-size
dependence (as a function of the lattice siZeof a suitable observable (to be defined
below) evaluated exactly at the critical poift. Thus it is necessary to have a good
estimate of the critical coupling. Fortunatel§, is known with high precision in each of
the three cased = 2, 3,4 in which we are interested. This is one of the reasons why we
have chosen this particular lattice realization of the cubic model.

In tables 1-3 we have collected the most recent resultg fdroth from Monte Carlo
simulations and from series expansions. #inrdicates the biased resummation of the HT
series in which the value of the ind@xis given as input parameter. It is interesting to see
that all the estimates agree within the errors.
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Table 4. Values of 8. used in this paper.

N B

2 0.454165(4)
3 0.693002(12)
4 0.935861(8)

In table 4 we report the values (chosen from table 1-3) that we used in our simulations.

3.2. Observables

There are four natural observables in the model (6). The two terms which appear in the
action:

E= stsy ©)
{xy)
and
P=Y"% (D" ®)
The total magnetization, which is the order parameter of the transition:
M= st )
and the ratio
M)
R=="—— 10
(22 (10)
which quantifies the violation of the @) symmetry in the modél

In order to study the stability of the fixed point we are actually interested in the derivative
of (R) with respect tou at 8 = 8. andu = 0:
9(R)

Dpr = —|,-0.8=3.- 12
R o | =0.=p. (12)

In fact this derivative measures the (generalized) susceptibility of the system with respect
to a cubic perturbation, such as what happens for the ordinary magnetic susceptibility in the
case of a magnetic perturbation or for the specific heat in the case of a thermal perturbation.
At this point, a standard finite-size scaling analysis tells us that the critical index which
measures the infrared stability of the system with respect to the above perturbations,
also controls the finite-size behaviour (namely thelependence) of the corresponding
susceptibility exactly at the critical point. In particular, in the case in which we are interested,
Dy should behave fop = 8. andu =0, as

D o< L7 (13)
1 Other choices are possible for the latter observable. For instance the term
2
X = Mmax
=5
whereMﬁ1ax is the maximal square of a component of the magnetization would work equally well. However, it
turns out that the rati® defined above is the one which can be measured in the most efficient and simple way.

(11)
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whereb, is exactly the stability eigenvalue of the Heisenberg fixed point that we are looking
for.

Scaling laws of the type (13) are expected to hold for sufficiently large valuds of
For small lattices, correction to scaling terms should be expected. It is thus important to
have results with small statistical errors for large lattice sizes. A few preliminary tests have
demonstrated that (at least for the cage= 3) sizes up toL = 32 are needed to extract
reliable estimates ob,. This requirement represents the major technical problem of this
work.

There are two possible choices to compiitg.

e It can be computed directly in the simulation;at= 0 as

Dg = (PR) — (P)(R). (14)

e It can be computed by using the finite-difference method, i.e. by simulating the model
at small non-zero values qf:
_ R(uw) — R(—p)
21 '
It is easy to recover the relationship betwelBp and Dy (). First, let us notice that
on a finite latticeR(«, B) must be an analytic function of its parameters. This holds also at
B = B.. Therefore we can Taylor-expari{ ., 8) in powers ofu for fixed 8 = 8.. Taking
the symmetric difference we obtain
3

(15)

D = D) + = S5 12 4 O(u). (16)
3! dud

Both definitions have their drawbacks. The= 0 simulations are affected by a strong
enhancement of the variance (hence of the statistical errork)iasreases. It ensues that
the statistical error oDy at a fixed number of measurements increases roughly’’3s As
a consequence excessively large samples are needed to keep the error sufficiently small for
L > 16.

In contrast, forDg(u) at fixedu the statistical error does not increase withHowever,
the Qu?) corrections do increase with. Reducing these @?) corrections requires a
reduction in the value of. This in turn requires an increase in the number of measurements
to keep the statistical error fixed.

In the following section we shall discuss a way of avoiding these problems. By using
the global @N) symmetry of the model att = O an improved version oD can be
constructed. This improvement does not change ithéependence of the variance, but
gives a significant reduction of its magnitude, thus allowing us to reach, with a reasonable
CPU time, lattice sizes as large As= 32 which are large enough to extract the finite-size
behaviour with the required precision. Most of the data that we shall discuss in the final
section were obtained by using this improved observable. We also performed, as a cross
check, some simulations at finite The agreement that we find between the value® pf
obtained in these two ways is a non-trivial check of the reliability of our results.

3.3. Variance-reduced estimator féry.

Variance-reduced estimators have the same expectation value as the corresponding standard
estimators. However, their variance is reduced, which allows for more accurate results
in Monte Carlo simulations than the standard estimator. A general principle to construct
variance reduced estimators is to look for degrees of freedom which can be integrated out
analytically.
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In order to obtain a variance reduced estimato?—;lé;if we integrateP,R and PR over
the global GN) rotations.

This is trivial for P and R, but it is less simple in the case of tliek component. Since
P is a sum over all lattice sites we can commute the integration over the global rotations
and the summation over the lattice sites. The integral to be solved is hence given by

= DT(IZ[mx)f]“) (an"ﬁ) 17)

whereT is an element of QV), DT the Haar-measure, the spin at the site, andm a
unit vector in the direction of the global magnetization. For symmetry reasons the integral
only depends on the angle betwegnandm, which we define as follows

ms, = CoSw). (18)

Integral (17) can be evaluated explicitly for any valueNof Details of the calculation
are reported in the appendix. Here we only list the results in the three cases in which we
are interested:

N=2

I =2+ % cod4a) (19)
N=3

I = g5 co94a) + 755 C0S20) + 139 (20)
N=4

I = Zcod(a) — 3cod () + 2%. (21)

3.4. The Monte Carlo algorithm

Due to the different symmetries in the models, we had to use different algorithms in the
two casesu = 0 andu # 0.

3.4.1. . = 0 In the caseu = 0 we used the single-cluster algorithm of Wolff [22] and
the microcanonical overrelaxation algorithm. The basic idea of the cluster algorithm is to
construct conditional Ising models. This is achieved by allowing only the sign-change of
the spin component parallel to a unit vectoin RY. The delete probability depends on the
pair of lattice sites and is given by

pd(X, )’) = min[l’ exlx_z(rsx)(rsy))] (22)

wherex and y are nearest-neighbour sites on the lattice. The vectisr chosen with a
probability density uniform ors¥ 1. For each update a newis chosen.

The variance of the improved estimator Bf is mainly caused by local fluctuations of
the spins. Hence it is useful to supplement the cluster-algorithm with a fast local algorithm
to produce local changes of the configuration. For that purpose we used the microcanonical
overrelaxation algorithm.

The elementary update of the algorithm is given by

/ 2(71)( sx)nx
S, = —————

— 5, 23
Rt (23)
wheren, is the sum of the nearest-neighbour spins,ofSince neither a random number nor
the evaluation of the exponential function is needed for this update the CPU-time required
is rather small compared with a Metropolis or a heat-bath update.
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The whole update cycle used in our simulations consists of a mixture of nine
overrelaxation sweeps arnk cluster updatesK is chosen such that the number of spins
updated inK cluster updates is of the order of the number of lattice sites. A measurement
is performed after each overrelaxation sweep and after the cluster-updates. There are hence
10 measurements in the nine overrelaxation sweepskachiister-updates cycle.

3.4.2. 4 # 0. For u # 0 some modifications are needed. We have restricted the vector
such thaf)"; (s")* is not altered by the update. This is guaranteed if the sign of a component
is changed or two components are exchanged or a combination of both. This means that
is either parallel to an axis or is diagonal in a plane.

risin
(1,0,...,0,(0,1,...,00---(0,0,...,0 (24)
or
1 1 1
—@1,1,...,0,—(1,0,...,1),...—(0,...1,1 25
ﬁ( )ﬁ( ) ﬁ( ) (25)
or
1 1 1
—@1,-1,...,0, —(1,0,...,-1),...—(0, ...1,-1). 26
Ji( )ﬁ( ) JE( ) (26)

While this restriction of- to a discrete subset ¢f¥~! does not violate detailed balance
it means that the cluster update by itself is not ergodic.

In order to restore ergodicity we supplement the cluster update with an (ergodic)
Metropolis update. For performance reasons we also added a local reflection update that is
microcanonical forw = 0. A spin is reflected at the sum of its neighbours

, (Sxsx)Sx
s, = —@ 2s, (27)
where S, is the sum of the spins on nearest-neighbour sites. dfor u # O the proposal
s, is accepted with a probability

Pace = min [1, exp(u PBI(COM (s;;>“]>]. (28)

A whole update cycle consists of one Metropolis update, one local reflection update
plus K cluster updateskK is chosen, as in the = 0, case such that the number of spins
updated inK cluster updates is of the order of the number of lattice sites. A measure is
performed in each update cycle.

3.5. Statistical and systematic errors

We evaluated statistical errors with the standard binning method. Both inuthe O

andu # 0 cases bins of 1000 update cycles are chosen (corresponding to 10000 and 1000
measurements respectively). This binning was already performed during the simulation since
not all individual measurements could be stored on disc. Besides the statistical uncertainty
we also have to face the systematic error due to the uncertaifityin the estimate og..

To evaluate this error we also measured in the simulation the expectation(¥aR)e The
difference

(ER) — (E)(R) (29)
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gives an estimate of the derivative @®) with respect to3, from which we can obtain the
systematic error induced oR by the uncertainty irg..:

((ER) — (E)(R)) x ABe. (30)

With a similar construction we obtain the error induced Bp. We can consider this
as a lower bound on the accuracy that we can reach for the derivatives. It makes no sense
to reduce the statistical error @z below this bound. This observation fixes the typical
sample size for the simulations, which was of the order of 20 000 bins.

4. Results and discussion

4.1. Resultsatt =0

We simulated the models with = 2, 3,4 atu = 0, 8 = 8., in the ranged. € [4 — 16] for
N=2;Le[4—-32]for N =3 andL €[4 — 20] for N = 4. The results are reported in
tables 5—7. In the first column we report the lattice size and in the second the values of the
derivative Dg. the first error in parenthesis denotes the statistical uncertainty, while in the
second parenthesis the error induced by the uncertairy im reported. In the last column

we report the sample size (hnumber of bins multiplied by the number of measurements in
each bin).

4.2. Results att £ 0

As a test of the above results we also performed simulations #t 0, both forN = 2
and N = 3. We evaluated the finitg estimatorsDg () by using equation (15). The

Table 5. Results forDg in the N = 2 model.

L Dp Statistics

4 0.011046(20)(1) 10008 10*
6 0.010506(34)(2) 10008 10*
8 0.010121(51)(2) 10008 10*
10 0.009728(58)(4) 15000 10*
12 0.009523(76)(5) 15009 10*
16  0.008904(117)(4) 1500010*

Table 6. Results forDy in the N = 3 model.

L Dp Statistics

4 0.019672(19)(3) 10008 10*

6 0.020118(19)(5) 1500@ 10*

8 0.020187(20)(7) 20004 10*
10 0.020196(25)(10) 20870 10*
12 0.020152(32)(13) 2150010
14 0.020178(40)(15) 2077010
16  0.020233(49)(16) 20750 10%
20 0.020094(68)(22)  2015010*
24 0.020178(84)(28)  2314610*
32 0.020265(140)(39) 1956010*
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Table 7. Results forDg in the N = 4 model.

L Dp Statistics

4 0.023474(15)(1) 1000 10*
6 0.025287(16)(3)  1000R 10°
8 0.026294(19)(4)  1000g 10°
10  0.027097(23)(6) 10009 10*
12 0.027742(27)(8) 10609 10*
16  0.028774(39)(13) 10000 10*
20  0.029605(52)(38) 10059 10°

Table 8. Results forDg for u # 0.

N=2 L=8 N=2 L=12 N=2 L=16 N=3 L=12
w=4 0.010503(140)(3)

w=2 0.010117(28)(1) 0.010008(122)(3)

w=1 0.010112(57)(1) 0.009 495(118)(3) 0.020977(64)(9)
1w=05 0.010 054(74)(1) 0.009 505(103)(3) 0.009 139(103)(4) 0.020 306(130)(9)
u =025 0.020 076(257)(9)
n=0 0.010121(51)(2) 0.009 523(76)(5) 0.008 904(117)(4) 0.020152(32)(13)

results are reported in table 8 where, in the last line, we also reported for comparison the
correspondingt = 0 estimates.

The agreement between the results obtained from the two approaches is very good and
makes us confident about the reliability of the= 0 set of data.

4.3. Theb, index

We fitted the data obtained at= 0 with the scaling law
Dr =CL™". (32)

The fit results are collected in table 9 where in the second column we give the minimum
value L, of L taken into account in the fit. In the third and fourth columns we report the
reducedy? and the confidence level respectively. Finally, the last two columns report the
best fit values ofC andb,. As usual we give in the first parenthesis the statistical error and
in the second the error induced By. The various fits are plotted and compared in figure 2
and 3.

The large value of¢? clearly indicates that for any value of the sample al. = 4 is
strongly affected by correction to scaling terms and must be discarded. Fits witheut
have an acceptablg?. However, this fact does not necessarily imply that it is justified to
ignore corrections to scaling. Hence we regard the fits \itl, = 8 as our final result.
Still it remains difficult to quantify the systematic error due to corrections to scaling. Based
on the experience with the finite-size scaling analysis of other exponents of the Heisenberg
model we expect them to be of the same order of magnitude as the statistical error of the
Lmin = 8 fits.
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Figure 2. Log(Dg) as a function of LogL). Triangles, squares and circles denote the- 4,

N = 3 and N = 2 data respectively. Errors are not reported since they are smaller than the
symbol sizes. To render easier the comparison among the three sets of data, all the values of
Dg have been normalized to the best fit value of the congfagee table 9 for the value of

C). The three lines correspond to the best fits obtained neglecting thé derivative.

Table 9. Results forC andbs.

N Lin szed CL (%) C b2

2 4 201 9 0.01335(9)(1)  0.1362(40)(3)
2 6 117 32 0.01381(24)(1)  0.1519(84)(4)
2 8 085 43 0.01445(54)(2)  0.1711(166)(6)
3 4 26.5 0 0.019.36(4)(2) —0.0174(10)(6)

3 6 132 23 0.020 05(6)(2) —0.0026(14)(7)

3 8 071 64 0.02022(10)(3)  0.0007(20)(9)
4 4 775 0 0.01928(3)(1) —0.1473(7)(4)

4 6 122 30 0.01997(5)(2) —0.1321(10)(5)

4 8 051 67 0.02008(8)(3) —0.1299(16)(8)

4.4. Discussion and comparison with other estimates

As can be seen from table 9, our results for= 3 are certainly incompatible with all the
existing estimates [4,5,9-12], except that of Kleinetrtal [6-8]. In fact, if we keep in

the fit for N = 3 also theL = 6 sample we find an impressive agreement with the result

b, = —0.002 14 of [7]. However, as mentioned above, we strongly suspect thdt thé
sample is still affected by correction to scaling terms and prefer to quote as our best estimate
the L = [8-32] resultb, = 0.000720)(9), which is still compatible with the result of [7],

but suggests tha¥, could indeed exactly coincide with 3. In this respect it must also be
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Figure 3. The N = 3 data only, plotted with a much higher resolution. The dotted line
corresponds to the bestifitcluding L = 6, while the broken line corresponds to the= [8—32]
fit. All the points are normalized as in figure 2.

noticed that the trend of the perturbative estimates,afuoted in [7] as a function of the
order in the perturbative expansion also suggestsXhatonverges to 3 in agreement with
our result.

In any case, let us stress again that it is obviously impossible to determine by means of
a numerical simulation whethé¥, = 3 is an exact result and that the fact that the difference
N, — 3| is so small, and compatible with zero, might well be a coincidence. However, we
think that it would be worthwhile to look for an argument which explains why the cubic
and Heisenberg fixed point in three dimensions should coincide exactly fer3.
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Appendix

In this appendix we evaluate the integral

— i14 i14
= fo . DT(lZnTsx) ] )<,Z[(Tm) ] ) (A1)

whereT is an element of QV), DT the Haar-measure, the spin at the sita andm a
unit vector in the direction of the global magnetization. For symmetry reasons the integral
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only depends on the angle betwegnandm which is defined as
ms, = Coq). (A2)
We write the integral as
I(a) = / ds (Zs;‘)/ dr (Z;ﬁ) (A3)
SN—l i SN’Z,S i

where f ¢v-1 denotes the integral over thé-dimensional spheref gv—2 ; denotes the integral
over theN — 1 dimensional subspace defined as the set of all the vecttirat for any
fixed s satisfy the equations = cogw). We choose the normalizations so that , ds = 1
and [y, dr = 1.

Because of symmetry we can restrict the calculation to the first component of

() :N/ dssf/ dt<zt;‘>. (A4)
SN—l SN’Z,.Y N

L

Now we decompose the integrfl,_, into the integral over the; component and for
fixed s, over the remainingg™ 2.

We obtain
1
I(@) =N constant/ dsg (1 — sV 9727 / ds’ / a <Zti4) "o
SN-2 SN=2 5

s1=0 i

S1=

where

S1=l -1
constant = [ / dsy (1 — s2)N=3/ 2} (AB)

1=0
ands’ is s without the 1-component.
Let us now study

/ ds’ / dr. (A7)
SN-2 SN_Z,S

This measure for is invariant under rotations around the 1-axis. The non-trivial question
is the measure for the 1-componentrofThe range of; is given by

fmax = COS()s1 + SiN(er),/1 — 52 (A8)
and
fmin = COS(@)s1 — SiN(a),/1 — s2. (A9)

The measure between these extreme values is given by the fact that fqrrasylistributed
on aSV=2 sphere. Hence the measure is (for> 2)

e\ (N-4)/2
constang [1— < ! c) } (A10)

2s
with ¢ = coqw)s; ands = sin(a),/1 — sf. The normalization constgnis given by

c+s _ 29(N-4/2y -1
consp = {/ [l — (tl C) ] } . (A11)
n=c—s 2S

For fixed#; the integration of the remaining components gives us
(1 —)*(R)x_1. With (R)y = 3/(N +2).
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Now we are in the position to write down the full integral:

51=l
I(@) =N constan;/ dsy (1 — s2) V=372 (A12)
S1=O
(N—4)/2
cts fn—c)2 3
consta 1-— th+ ——1-1»%). (A13
[ |-(0)]  (rgme-er). e

This integral can be solved with standard techniques and vyields in the three cases

N =2, 3, 4. The results are listed in section 3.
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